MATHEMATICAL FOUNDATIONS OF DATA ANALYSIS
 UNIT V
 SINGULAR VALUE DE COMPOSITION OF A MATRIX

Definition: Singular Value Decomposition of a matrix:

A Singular Value Decomposition (SVD) of an $m \times n$ matrix A of rank r is a factorization $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathbf{T}}$ where \mathbf{U} and \mathbf{V} are orthogonal and $\boldsymbol{\Sigma}=\left[\begin{array}{ll}\boldsymbol{D} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right] \mathrm{m} \times \mathrm{n}$ in block form where $\mathbf{D}=\boldsymbol{\operatorname { d i a g }}\left(\mathbf{d}_{\mathbf{1}}, \mathbf{d}_{2}, \ldots, \mathbf{d}_{\mathbf{r}}\right)$ where each $\mathrm{d}_{\mathrm{i}}>0$, and $\mathrm{r} \leq \mathrm{m}$ and $\mathrm{r} \leq \mathrm{n}$.

Note1 : If $\mathrm{A}=\mathrm{U} \mathrm{\Sigma V}{ }^{\mathrm{T}}$ is any SVD for A as then:

1. $\mathrm{r}=\operatorname{rank} \mathrm{A}$.
2. The numbers $d_{1}, d_{2}, \ldots, d_{r}$ are the singular values of $A^{T} A$ in some order.

Note 2 :

Let A be a real $\mathrm{m} \times \mathrm{n}$ matrix. Then:

1. The eigen values of $A^{T} A$ and $A A^{T}$ are real and non-negative.
2. $A^{T} A$ and $A A^{T}$ have the same set of positive eigen values.

Definition: Singular values of the matrix A

Let A be a real $\mathrm{m} \times \mathrm{n}$ matrix. Let $\boldsymbol{\lambda}$ be an eigenvalue of $\mathrm{A}^{\top} \mathbf{A}$, with non zero eigenvectors $q_{i} \in R^{n}$. Then the real numbers $\sigma_{i}=\sqrt{\lambda_{i}}=\left\|\boldsymbol{A} \boldsymbol{q}_{i}\right\|$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}$, are called the singular values of the matrix A.

Definition: Singular matrix of A

Let A be a real, $m \times n$ matrix of rank r, with positive singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ and $\sigma_{i}=0$ if $i>$ r. Define: $\mathbf{D}_{\mathrm{A}}=\operatorname{diag}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2} \ldots, \boldsymbol{\sigma}_{\mathrm{r}}\right)$ and $\Sigma_{\mathrm{A}}=\left[\begin{array}{cc}D_{A} & 0 \\ 0 & 0\end{array}\right]_{m \times n}$ Here Σ_{A} is in block form and is called the Singular matrix of A.

Definition: Two subspaces associated with a matrix A having m rows and n columns.
$\operatorname{im} A=\left\{A x \mid x \in R^{n}\right\}$ and col $A=\operatorname{span}\{a \mid a$ is a column of $A\}$.
Then $\operatorname{im} \mathbf{A}$ is called the image of \mathbf{A} (so named because of the linear transformation $R^{n} \rightarrow R^{m}$ with $x \rightarrow$ $A x)$; and col \mathbf{A} is called the column space of \mathbf{A}.

Note : im A=col A.
Definition: Singular Value Decomposition (SVD) of A

Definition: Let A be a real $m \times n$ matrix, and let $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ be the positive singular values of A. Then \boldsymbol{r} is the rank of \mathbf{A} and we have the factorization $\mathbf{A}=\mathbf{P} \boldsymbol{\Sigma}_{A} \mathbf{Q}^{\top}$ where \mathbf{P} and \mathbf{Q} are orthogonal matrices. The factorization $\mathbf{A}=\mathbf{P} \Sigma_{A} \mathbf{Q}^{\boldsymbol{\top}}$, where \mathbf{P} and \mathbf{Q} are orthogonal matrices, is called a Singular Value Decomposition (SVD) of A. This decomposition is not unique.

Reference:

https://math.emory.edu/~Ichen41/teaching/2020_Fall/Section_8-6.pdf

