MATHEMATICAL FOUNDATIONS OF DATA ANALYSIS

UNIT V

SINGULAR VALUE DE COMPOSITION OF A MATRIX

Definition: Singular Value Decomposition of a matrix:

A Singular Value Decomposition (SVD) of an $m \times n$ matrix A of rank r is a factorization $A = U\Sigma V^{T}$ where U and V are orthogonal and $\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} m \times n$ in block form where $D = diag (d_1, d_2, ..., d_r)$ where each $d_i > 0$, and $r \le m$ and $r \le n$.

Note1 : If $A = U\Sigma V^T$ is any SVD for A as then:

1. r = rank A.

2. The numbers d_1 , d_2 , ..., d_r are the singular values of $A^T A$ in some order.

Note 2 :

Let A be a real $m \times n$ matrix. Then:

1. The eigen values of $A^{T}A$ and AA^{T} are **real and non-negative.**

2. $A^{T}A$ and AA^{T} have the same set of **positive eigen values**.

Definition: Singular values of the matrix A

Let A be a real m×n matrix. Let λ be an **eigenvalue of** $\mathbf{A}^{\mathsf{T}}\mathbf{A}$, with non zero eigenvectors $q_i \in \mathbb{R}^n$. Then the **real numbers** $\sigma_i = \sqrt{\lambda_i} = ||\mathbf{A}\mathbf{q}_i||$ for i = 1, 2, ..., n, are called the **singular values of the matrix A**.

Definition: Singular matrix of A

Let A be a real, m×n matrix of rank r, with **positive singular values** $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$ and $\sigma_i = 0$ if i > r. Define: $D_A = \text{diag}(\sigma_1, \sigma_2, ..., \sigma_r)$ and $\Sigma_A = \begin{bmatrix} D_A & 0 \\ 0 & 0 \end{bmatrix}_{m \times n}$ Here Σ_A is in **block form** and is called the **Singular matrix of A**.

Definition: Two subspaces associated with a matrix A having m rows and n columns.

im A = { Ax | $x \in \mathbb{R}^n$ } and col A = span {a | a is a column of A}.

Then **im A** is called the **image of A** (so named because of the linear transformation $\mathbb{R}^n \to \mathbb{R}^m$ with $x \to Ax$); and **col A** is called the **column space of A**.

Note : im A = col A.

Definition: Singular Value Decomposition (SVD) of A

Definition: Let A be a real m×n matrix, and let $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$ be the positive singular values of A. Then r is the rank of A and we have the factorization $A = P\Sigma_A Q^T$ where P and Q are orthogonal matrices. The factorization $A = P\Sigma_A Q^T$, where P and Q are orthogonal matrices, is called a Singular Value Decomposition (SVD) of A. This decomposition is not unique.

Reference:

https://math.emory.edu/~lchen41/teaching/2020_Fall/Section_8-6.pdf